a2 United States Patent

Tzeng

US009306693B2

US 9,306,693 B2
Apr. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

TIME SYNCHRONIZATION ARCHITECTURE
IN ANETWORK DEVICE

Applicant: BROADCOM CORPORATION,
Irvine, CA (US)

Inventor: Shr-Jie Tzeng, Cupertino, CA (US)

Assignee: Broadcom Corporation, Irvine, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 119 days.

Appl. No.: 14/147,025

Filed: Jan. 3,2014

Prior Publication Data
US 2015/0139251 Al May 21, 2015

Related U.S. Application Data

Provisional application No. 61/905,024, filed on Nov.
15, 2013.

Int. Cl1.

HO04J 3/06 (2006.01)

HO4L 12726 (2006.01)

HO4L 1/00 (2006.01)

U.S. CL

CPC H04J 3/0661 (2013.01); H04J 3/0667
(2013.01); HO4L 1/00 (2013.01); HO4L 43/106

(2013.01)
Field of Classification Search
CPC ..o HO4L 12/2684; HO04L 43/106; HO4L
2463/121; HO4L 41/00; HO4L 12/5602;
HO4L 2012/5635; HO4L 47/10; HO4L
2012/5636; HO4L 2012/5631; HO4L
2012/5625; HO4L 49/3081; HO4L 12/5615;
HO4L 12/5601; H04J 3/0638; HO04J 3/0685;
HO041J 3/0632; H041 3/065; H04J 3/0655;
HO04J 3/0661; HO4W 56/00, HO4W 56/001;

USPC 370/236.1-236.2
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,545,979 B1* 4/2003 Poulincceevvrnne.. 370/241.1

8,718,482 B1* 5/2014 Robertsetal. 398/161
2005/0053006 Al* 3/2005 Hongal etal. 370/236.2
2009/0122781 Al* 5/2009 Voglewede et al. 370/350
2010/0020829 Al* 1/2010 Ruffini 370/509
2010/0306527 Al* 12/2010 Huin 713/153
2012/0250704 Al* 10/2012 Yamadaetal. 370/503
2013/0028265 Al* 1/2013 Ronchetti et al. 370/400
2013/0100832 Al* 4/2013 Flinnetal. 370/252
2013/0100948 Al* 4/2013 Irvinecocoovvvevvenrennen. 370/350

(Continued)

Primary Examiner — Warner Wong

(74) Attorney, Agent, or Firm — McDermott Will & Emery
LLP

(57) ABSTRACT

A method of generating timestamp information irrespective
of a packet format include generating an egress timestamp
corresponding to a time at which a first egress packet associ-
ated with a synchronization event is transmitted to a network
medium; storing the egress timestamp in a memory based on
an egress identifier; and transmitting a second egress packet
associated with the synchronization event with the stored
egress timestamp being included in the transmitted second
egress packet for timing synchronization in the network
medium. The method also includes receiving an incoming
packet from the network medium; generating an ingress
timestamp corresponding to a time at which the incoming
packet is received; replacing an error detection field included
in the incoming packet with an error detection tag; inserting
the ingress timestamp into the error detection tag; and pro-
viding the incoming packet with the ingress timestamp to a
processor for synchronization of a local clock.

HO04W 56/0085 20 Claims, 8 Drawing Sheets
100
Master 102 Intermediate Node 105 Stave 104
Neassiat Clack pipass G Eobepreisen Diopregsss s o
g s Clock 130 : o : Eou Cloek 140

Networlc

Network Nk
and Higher bRien: s and Higher
Layer: Layer '
Layers 154 954 s LAYes:
B B B s s T oo ot S et iRt S 0 S
CMACIDE i MACISE L MATIAE
Physioat 128 | physical 128 Phpsica 145

1087

US 9,306,693 B2

Page 2
(56) References Cited 2014/0281834 Al* 9/2014 Hardesty GO6F 11/1004
714/776
U.S. PATENT DOCUMENTS 2014/0355628 Al* 12/2014 Akhlaqetal. 370/509
2015/0063375 Al* 3/2015 Tzengetal. ... 370/512
2014/0177653 Al* 6/2014 Tzeng ..o 370/503 2015/0092793 Al* 4/2015 Aweyaccccoeevnenee 370/503
2014/0226683 Al* 8/2014 Castiel 370/474

2014/0269672 Al* 9/2014 Zampetti 370/350 * cited by examiner

US 9,306,693 B2

Sheet 1 of 8

Apr. 5, 2016

U.S. Patent

-~ 80T

ST [E0EAYd SET 1B2IsALd g 1eatsALd STT{EOEAYY

SFLOVIN GET OV 9L OV 9TTOVIN
2788 it
Srohed ver vt siadey
Jahkey 19Ae7

13U pue JoME OIS JaydHy pue

HIOMIBN % N HIOMISN JiomaN

QrLH00)

0eT yoymg o

ey
885T did

90T SPON LIt

OEL R0

1T

Pommorr
88STdid | oo aoise |

7071 121se

U.S. Patent Apr. 5, 2016 Sheet 2 of 8 US 9,306,693 B2

200
.. _Tolinternal
~ Switch 204
Memory - 202
Processor 212 214
220
Network Layer PTP 1588
and Higher Layer — Packet
Protocols 218 " Generation
& Decoding e
. 24 Timing |
Sync
MAC216 o 226
,,,,,,,,,,,,,,,,,,,,,,, G
o240
&
Timestamp Generator " Clock
236 . 234
{EEE 1588 Timestamp
insert/Pkidetect
238
& . PHY
¥ 'y
Timestamp Memory . 210
Controller
244
Timestamp
Memory
' 242
_ Physical Interface
: 232
T~ Network
Medium

Network Entity
208

206

FIG. 2

US 9,306,693 B2

Sheet 3 of 8

Apr. 5, 2016

U.S. Patent

yie

[423

4013

0t1¢
¥ gesT Juuuny | XL
. DVLTIW Ul puewwod gav |
ydnosyi-ssed 2y ~ dosy
X1 @pous DY)
0ce

gzs

{GINAHdD

SIdAHAO

7

8891 3331

ov172u) o pasen”,

.,,/ S1ssaudzasols

9T¢€ -~

S3AY3IS

yanos-ssed 3y ~das)y
XL 3pow JHD .-
21807 Suryoums T

e pze

ND/Dd

,,\.\ Buppaye 2D aqesip 03 ieM3jos 80t
~ T HOLMS

o

(443

US 9,306,693 B2

Sheet 4 of 8

Apr. 5, 2016

U.S. Patent

00v

¥ 'Ol

90¢ 0t
1A AHAD
S2dAHAD
{ o piepuels xy

8851 33

g

70§

RPELEEEN

01¢
3oels 85T 3uuuny

N,

unjIAY

,,,,,,,,,,,,,,,,,,,,, «

AN

. owogesp

9Tg

77 Suppap

siquss |

24D alqesip)

3807 Buyoums
aous) 3w ,M 380¢
[g HILIMS

80V

Yoy

oty

US 9,306,693 B2

Sheet 5 of 8

Apr. 5, 2016

U.S. Patent

45 'Oid
- ___Si aay 42 Xy ar_id
095 - ouq . 1 _ W £Uq 955
\ [o:clovi g
S 855 -
Z¢¢6 lewii0§ OYL g $s94383
[o:s1lDIS S1 SENYEREL ovL 8 -
$6S - 0/ i 3:GT 9T:€2 74113 78S
fo:1elow
1ew.of DY L DY) sse48]
0ss
VS 'Ol
[e:0€lsuqo8 awi asN/[0:£Zls1q08 dwil asN
[o:zzlsL o1
¥0S B
s1 ol
GIAYISIY 242 Xy al Did .
0¥q STHg g €Uq " 905
[o:elovia
08 805 1eWI0} DY L g ssa43uj
SL ol oV g
vos 0:L 8:T 9T €T vT1E 708
fo:1€loM0
005 1BW.I0) DY L DY) ssa43y|

U.S. Patent Apr. 5, 2016 Sheet 6 of 8 US 9,306,693 B2

|@)]
(en]
O

Receive, at a first physical interface, a first egress
packet associated with a synchronization event froma | > 602
Processor.

.

Transmit, from a second physical interface, the first
egress packet to a network medium for initiating a timing
synchronization in the network medium.

‘

Generate an egress timestamp corresponding to a time
at which the first egress packet is transmitted from the
second physical interface to the network medium, the

egress timestamp being generated irrespective of a
packet format of the first egress packet.

.

Store the egress timestamp in a memory based on an
egress identifier.

+

Receive, at the first physical interface, a second egress

packet associated with the synchronization event from

the processor, wherein the processor generates the —.__ 610

second egress packet based on the stored egress
timestamp.

-~ 606

k4

Transmit, from the second physical interface, the

second egress packet, the stored egress timestamp |- 612

being included in the transmitted second egress packet

for completing the timing synchronization in the network
medium.

FIG. 6

U.S. Patent Apr. 5, 2016 Sheet 7 of 8 US 9,306,693 B2

-~
O

Receive, at a first physical interface, an
incoming packet from a network medium, the - _. 702
incoming packet comprising an error detection

field.

Generate an ingress timestamp

corresponding to a time at which the incoming 244
packet is received at the first physical
interface.
¥
Replace the error detection field with an error | 206

detection tag.

Insert the ingress timestamp into the error 708
detection tag.

¥

Send, from a second physical interface, the
incoming packet with the ingress timestamp to .- 710
a processor.

FIG. 7

US 9,306,693 B2

Sheet 8 of 8

Apr. 5, 2016

U.S. Patent

8 'DId
918 4% 4% 018
\ N N \
(s)soepaiy) BoeLe|
SIOMBN 80IA8(] ($)J0s$800.d NOY
Indu|
808
ERETE
801A3(] Arowe abeio)g
nding WwajsAg
908 08

- 008

US 9,306,693 B2

1

TIME SYNCHRONIZATION ARCHITECTURE
IN A NETWORK DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of U.S. Provi-
sional Patent Application No. 61/905,024, entitled “Time
Synchronization Architecture in a Network Device”, filed on
Now. 15, 2013, which is hereby incorporated by reference in
its entirety for all purposes.

TECHNICAL FIELD

The present description relates to clock synchronization of
networked systems, and more particularly, but not exclu-
sively, to time synchronization architecture in a network
device.

BACKGROUND

Timing and frequency synchronization among network
entities that communicate with each other is an important
issue in network performance. The accuracy of the synchro-
nization between network nodes affects the performance of
systems attached to the network and also the overall perfor-
mance of the network. The IEEE 1588 protocol, referred to as
the Precision Time Protocol (PTP), is a technique for provid-
ing robust cost-effective time synchronization for distributed
systems.

Conventional IEEE 1588 approaches require that every
participating network interface (e.g., port) takes very accurate
timestamps of selected packet ingress and/or egress, and
manages precisely synchronized time. By taking timestamps
at the edge of the physical layer for a network interface very
close to the network medium, the time difference between
when a packet is transmitted from a first network node to that
packet being received at a second network node can be mini-
mized.

To perform timestamp functions, the physical layer for the
network interface would need to parse the packet using a
standard IEEE 1588 packet format. Network nodes that uti-
lize network layer 2 encryption such as MACSec encapsulate
and protect the packet. As such, the physical layer would not
be able to parse the encrypted packet correctly.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to pro-
vide further understanding of the subject technology and are
incorporated in and constitute a part of this specification,
illustrate aspects of the subject technology and together with
the description serve to explain the principles of the subject
technology.

FIG. 1 illustrates an example of a system for synchronizing
time between network entities, in accordance with various
aspects of the subject technology.

FIG. 2 illustrates an example of a system for time synchro-
nization of network entities, in accordance with various
aspects of the subject technology.

FIG. 3 is a block diagram illustrating an example of an
egress data path of a network entity for time synchronization
of network entities, in accordance with various aspects of the
subject technology.

FIG. 4 is a block diagram illustrating an example of an
ingress data path of a network entity for time synchronization
of network entities, in accordance with various aspects of the
subject technology.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 5A-5B illustrate examples of packet formats for
time synchronization of network entities, in accordance with
various aspects of the subject technology.

FIG. 6 illustrates an example of a method of an egress data
path for time synchronization of network entities, in accor-
dance with various aspects of the subject technology.

FIG. 7 illustrates an example of a method of an ingress data
path for time synchronization of network entities, in accor-
dance with various aspects of the subject technology.

FIG. 8 conceptually illustrates an electronic system with
which aspects of the subject technology can be implemented.

DETAILED DESCRIPTION

The detailed description set forth below is intended as a
description of various configurations of the subject technol-
ogy and is not intended to represent the only configurations in
which the subject technology can be practiced. The appended
drawings are incorporated herein and constitute a part of the
detailed description. The detailed description includes spe-
cific details for the purpose of providing a thorough under-
standing of the subject technology. However, the subject tech-
nology is not limited to the specific details set forth herein and
can be practiced using one or more implementations. In one
or more instances, structures and components are shown in
block diagram form in order to avoid obscuring the concepts
of the subject technology.

In various aspects, the subject technology relates to sys-
tems and methods of time synchronization between network
entities, but more particularly, to a time synchronization
architecture in a network device that enables timestamp gen-
eration irrespective of a packet format. In this respect, the
systems and methods include receiving, at a first physical
interface, a first egress packet associated with a synchroniza-
tion event from a processor, transmitting, from a second
physical interface, the first egress packet to a network
medium for initiating a timing synchronization in the network
medium, generating an egress timestamp corresponding to a
time at which the first egress packet is transmitted from the
second physical interface to the network medium with the
egress timestamp being generated irrespective of a packet
format of the first egress packet, storing the egress timestamp
in a memory based on an egress identifier, receiving, at the
first physical interface, a second egress packet associated
with the synchronization event from the processor, in which
the processor generates the second egress packet based on the
stored egress timestamp, and transmitting, from the second
physical interface, the second egress packet with the stored
egress timestamp being included in the transmitted second
egress packet for completing the timing synchronization in
the network medium.

The systems and methods also can include receiving, at a
first physical interface, an incoming packet from the network
medium, generating an ingress timestamp corresponding to a
time at which the incoming packet is received, replacing an
error detection field included in the incoming packet with an
error detection tag, inserting the ingress timestamp into the
error detection tag, and sending, from a second physical inter-
face, the incoming packet with the ingress timestamp to a
processor for synchronization of a local clock.

Based on the foregoing, the subject technology can avoid
the need to parse incoming packets from the network medium
using an error-detection tag to facilitate timestamp genera-
tion, thus allowing a physical layer device (e.g., PHY) to
perform timestamp functions irrespective of whether the
incoming packet arrives at the PHY encrypted or not. Con-
versely, the PHY can provide timestamping functionality

US 9,306,693 B2

3

while preserving encrypted contents of outgoing packets with
the use of the error-detection tag.

FIG. 1 illustrates a system 100 for synchronizing time
between network entities, in accordance with various aspects
of the subject technology. The system 100 includes a master
102, slave 104, and intermediate node (e.g., switch device)
106, which interconnects master 102 and slave 104. Not all of
the depicted components are required, however, and one or
more implementations can include additional components
not shown in the figure. Variations in the arrangement and
type of the components can be made without departing from
the spirit or scope of the claims as set forth herein. Additional
components, different components, or fewer components can
be provided.

The IEEE 1588 protocol is based on packet exchanges
between network entities (or network nodes) defined as mas-
ters and as slaves (also referred to as master nodes and slave
nodes, respectively). Each slave (e.g., slave 104) synchro-
nizes its clock (“slave clock™) to the clock of a master (e.g.,
master 102). To enhance fault tolerance, an election process
can determine one among multiple masters to provide the
accurate clock at any particular instant to the slaves. The
master that is selected to provide the accurate clock is referred
to as a grandmaster.

In various aspects, master 102 provides a master clock 110
to which slave 104 and/or switch 120 synchronizes. Master
clock 110 can be based upon a global positioning system
(GPS) clock or another accurate clock. Master 102 can
include, for example, a GPS receiver (not shown) and GPS
clock adjust circuitry (not shown) that can be used by master
102 to keep master clock 110 synchronized with a highly
accurate external GPS clock. Master 102 can include one or
more computers, such as a server computer or cluster of
server computers. Master 102 is coupled to slave 104 and one
or more intermediate nodes 106 over a network 108. Network
108 can include a network topology, such as, but not limited
to, Ethernet.

Master 102 includes a network protocol stack including a
physical layer 118, a media access control (MAC) layer 116,
and network and higher layer protocol module 114. Master
102 also includes an IEEE 1588 protocol module 112. Each of
the modules 112, 114, 116 and 118 can be implemented in
software, firmware, hardware or a combination thereof.

Most networks adhere to the layered approach provided by
the open systems interconnect (OSI) reference model. The
OSI reference provides a seven (7) layer approach, which
includes an application layer (Layer 7), a presentation layer
(Layer 6), a session layer (Layer 5), a transport layer (Layer
4), a network layer (Layer 3), a data link layer (Layer 2) and
a physical layer (Layer 1). Layer 7 through Layer 5 inclusive
can include upper layer protocols, while Layer 4 through
Layer 1 can include lower layer protocols. Some networks
might utilize only a subset of seven layers.

Layer 7, the application layer, is responsible for supporting
network applications such as web browsers and email clients,
and is implemented in software in end systems such as per-
sonal computers and servers.

Layer 6, the presentation layer, is responsible for masking
any differences in data formats that might occur between
dissimilar or disparate systems. The presentation layer speci-
fies architecture-independent data transfer formats and can
enable encoding, decoding, encryption, decryption, compres-
sion and/or decompression of data.

Layer 5, the session layer, is responsible for managing user
session dialogues. In this regard, the session layer can be
enabled to control establishment and/or termination of logical

15

20

25

30

40

45

55

4

links between users. The session layer can also be enabled to
provide handling and reporting of upper layer errors.

Layer 4, the transport layer, is responsible for passing
application layer messages between the client and server
sides of an application. In this regard, the transport layer can
be enabled to manage end-to-end delivery of messages in the
network. The transport layer can include various error recov-
ery and/or flow control mechanisms, which can provide reli-
able delivery of messages.

Layer 3, the network layer, is responsible for determining
how data can be transferred between network devices. Data
can be routed according to unique network addresses. In this
regard, the network layer can route, for example, datagrams
between end systems. Internet Protocol (IP), for example,
defines the form and content of the datagrams and is imple-
mented in Layer 3 in combination with any number of routing
protocols which can be implemented in the various nodes
(devices such as bridges and routers) along a datagram’s path
from one end system to another. By way of example, the
network and higher layer protocol module 114 includes
operations to process Layer 3 up to Layer 7 protocols, includ-
ing, but not limited to, routing and forwarding.

Layer 2, the data link layer, is responsible for moving a
packet of data from one node to another. The data link layer
defines various procedures and mechanisms for operating
communication links and can enable, for example, the fram-
ing of packets within the network. The data link layer can
enable detection and/or correction of packet errors. The Eth-
ernet (IEEE 802.3) protocol is one common link layer proto-
col that is used in modern computer networks. By way of
example, the MAC layer 116 includes operations to process
Layer 2 packet headers and protocols.

Layer 1, the physical layer, is responsible for defining the
physical means, which can include optical, electrical and/or
mechanical means, for communicating data via network
devices over a communication medium. In this regard, Layer
1 includes the conversion of a data stream into a series of
physical signals for transmission over a physical medium.
Layer 1 technologies such as Ethernet can implement a num-
ber of Layer 1 protocols depending on whether the signal is to
be transmitted over twisted-pair cabling or over-the-air for
example. By way of example, the physical layer 118 includes
operations to process Layer 1 protocol aspects and receipt/
transmission of packets from/to the network media. Physical
layer 118 can be implemented as a physical layer device
(sometimes referred to as a PHY).

IEEE 1588 protocol module 112 operates to provide the
generation and processing of messages, and maintaining of
state related to PTP at master 102. IEEE 1588 protocol mod-
ule 112 can include functions, such as time stamping and/or
classification, implemented in hardware of the physical layer
118 and other functions implemented in software.

Slave 104 includes a network protocol stack including a
physical layer 148, a media access control (MAC) layer 146,
and network and higher layer protocol module 144. Slave 104
also includes an IEEE 1588 protocol module 142. Each of the
modules 142, 144, 146 and 148 can be implemented in soft-
ware, firmware, hardware or a combination thereof.

IEEE 1588 protocol module 142 operates to provide the
generation and processing of messages, and maintaining of
state related to PTP at slave 104. IEEE 1588 protocol module
142 can include functions, such as time stamping and/or
classification, implemented in hardware of the physical layer
148 and other functions implemented in software. IEEE 1588
module 142 operates to maintain synchronization of slave
clock 140 with a master clock, such as master clock 110.

US 9,306,693 B2

5

Network and higher layer protocol module 144 includes
operations to process Internet protocol (IP) and higher layer
(e.g., transport layer), including routing and forwarding.
MAC layer 146 includes operations to process Layer 2 packet
headers and protocols. Physical layer 148 includes operations
to process Layer 1 protocol aspects and receipt/transmission
of'packets from/to the network media. Physical layer 148 can
be implemented as a physical layer device (sometimes
referred to as a PHY).

Intermediate node 106 includes a network protocol stack
including a physical layer 128 and 138, a media access con-
trol (MAC) layer 126 and 136, and network and higher layer
protocol modules 124 and 134. Intermediate node 106
includes a switch 120 that operates to route/switch incoming
packets to an outgoing interface. For example, packets from
master 102 to slave 104 are received on a first physical inter-
face and switched using switch 120 to a second physical
interface through which the packet is transmitted to slave 104.
Intermediate node 106 also includes an IEEE 1588 protocol
module 122 and a clock 130. Each of the modules 120, 122,
124, 126, 128, 134, 136 and 138 can be implemented in
software, firmware, hardware or a combination thereof.

IEEE 1588 protocol module 122 operates to provide the
determination of residence time of PTP packets and update of
timestamps at intermediate node 106. IEEE 1588 protocol
module 122 can include functions, such as time stamping
and/or classification, implemented in hardware of the physi-
cal layer 128 and other functions implemented in software.
Note that where intermediate node 106 can be a master and/or
slave, in addition to the above operations of IEEE 1588 pro-
tocol module 122, operations described with respect to IEEE
1588 protocol modules 112 and 142 such as, for example,
generation and processing of messages, and maintaining of
state related to PTP, can be provided by IEEE 1588 protocol
module 122.

Network and higher layer protocol modules 124 and 134
include operations to process Internet protocol (IP) and
higher layer (e.g., transport layer), including routing and for-
warding. MAC layer 126 and 136 includes operations to
process Layer 2 packet headers and protocols. Physical layer
128 and 138 includes operations to process Layer 1 protocol
aspects and receipt/transmission of packets from/to the net-
work media. Physical layer 128 and 138 can be implemented
as physical layer devices (sometimes referred to as a PHY).

At Layer 1, enterprise networks are based predominantly
on IEEE 802.3 Ethernet technology. While Ethernet offers
ubiquitous and inexpensive connectivity to the Enterprise, it
is not particularly strong in controlling access to that network.
IEEE standards 802.1ae, 802.1af, and 802.1ar form the basis
of an architecture for network access control in Ethernet
networks. The IEEE 802.1ae (MACSec) standard defines the
data link layer (Layer 2) encryption and authentication
mechanisms. IEEE 802.1af defines the control plane and
keying protocols for 802.1ae. IEEE 802.1ar defines how the
network and the devices connected to the network identify
and validate each respective identity.

MACSec integrates security into wired Ethernet by iden-
tifying the devices connecting to a local area network (LAN)
and classifying the devices as authorized or unauthorized.
Exemplary network devices that can be identified and classi-
fied include, but is not limited to, computers, wireless access
points, servers, voice-over-Internet-protocol (VOIP) tele-
phones, routers, switches, bridges and hubs.

Although MACSec can provide greater network security
and reliability, upgrading an existing network to be MACSec
compatible can be difficult. In this regard, MACSec provides
network protection at the data link layer (or Layer 2) by

10

15

20

25

30

35

40

45

50

55

60

65

6

encrypting the data of an Ethernet frame, inserting a header
(e.g., SecTAG) between the source MAC address and the
encrypted data, and appending an integrity check value (ICV)
after the encrypted data. The Ethernet frame also can include
acyclic redundancy check (CRC)field or error detection field
to provide error detection for the MACSec packet. Conse-
quently, because the IEEE 1588 protocol requires parsing of
apacketin an IEEE 1588 format, the physical layer (or Layer
1) might be unable to process MACSec frames, as the physi-
cal layer would not be able to parse the encrypted packet
correctly.

As such, there is a need for a timestamp mechanism
capable of synchronizing network entities independent of a
packet format. The subject technology provides for time syn-
chronization of networked systems irrespective of whether an
incoming packet arrives at the PHY encrypted or not.

FIG. 2 illustrates a system 200 for time synchronization of
network entities, in accordance with various aspects of the
subject technology. System 200 illustrates a line card 202 in a
network entity participating in IEEE 1588 timing synchroni-
zation. Not all of the depicted components are required, how-
ever, and one or more implementations can include additional
components not shown in the figure. Variations in the arrange-
ment and type of the components can be made without depart-
ing from the spirit or scope of the claims as set forth herein.
Additional components, different components, or fewer com-
ponents can be provided.

Line card 202 is coupled to an internal switch (not shown)
via at least one communications bus 204. The internal switch
interconnects line card 202 to other line cards and processing
devices of the network entity. The communications bus 204
can include, but is not limited to, a serializer/deserializer
(SERDES) interface or a quad serial Gigabit media indepen-
dent interface (QSGMII). The internal switch can include
multiple physical ports and can perform packet switching
according to one or more routing protocols and/or rules.

Line card 202 can be connected to a network medium 206,
such as, but not limited to, an Ethernet network. Network
medium 206 interconnects line card 202 to other network
entities 208, such as, for example, entities that perform as
masters, slaves, and/or intermediate nodes in an IEEE 1588
synchronization network. In various aspects, the network
entities 208 include MACSec protocol devices for protecting
Ethernet frames traversing the network medium 206.

Line card 202 includes a network physical layer implemen-
tation (sometimes referred to as a PHY) 210, a processor 212,
alocal memory 214, a MAC protocol module 216, a network
and higher layer protocol module 218, a IEEE 1588 protocol
module 220, and a communications infrastructure (e.g., bus)
interconnecting modules 210, 212, 214, 216, 218 and 220.

Processor 212 can include any processor that operates to
execute sequences of instructions. Processor 212 can include,
for example, a central processing unit (CPU), field program-
mable gate array (FPGA), application specific integrated cir-
cuit (ASIC), or digital signal processor (DSP).

Memory 214 includes a volatile storage memory local to
line card 202. Memory 214 can include a dynamic random
access memory (DRAM), static random access memory
(SRAM), flash memory, or other type of memory. Memory
214 can be utilized by processor 212 to store instructions for
execution, configurations, and intermediate results of com-
putations. In some aspects, memory 214 includes a non-
volatile storage memory local to line card 202.

MAC protocol module 216 can be implemented in hard-
ware, software, firmware or as a combination thereof. MAC

US 9,306,693 B2

7

protocol module 216 operates to provide the media access
control processing for transmitting and receiving packets
from network medium 206.

Network and higher layer protocols module 218 can be
implemented in hardware, software, firmware or as a combi-
nation thereof. Network and higher layer protocols module
218 operates to provide the network layer (Layer 3) and
higher protocol layer (e.g., Layers 4-7) processing for trans-
mitting and receiving packets from network medium 206. For
example, generation and reading of packet headers for Layer
3 and above protocols, and routing, are example operations
that can be performed by, or assisted in, network and higher
layer protocols module 218.

IEEE 1588 protocol module 220 provides for operations
required in accordance with the IEEE 1588 protocol. IEEE
1588 protocol module 220 includes a PTP packet generation
and decoding module 224 and a timing synchronization mod-
ule 226. PTP packet generation and decoding module 224
provides for generating packets for synchronization events or
defined IEEE 1588 events (e.g. SYNC, DELAY_REQ and
DELAY_RSP). In some aspects, the PTP packet generation
and decoding module 224 can decode IEEE 1588 packets that
are received. Timing synchronization module 226 provides
for determining and initiating the adjustment that is to be
made to a local clock based upon the timestamps collected
based upon the IEEE 1588 synchronization message
exchange. In various aspects, the IEEE 1588 protocol module
220 is operative in an ingress data path of the line card 202.

PHY 210 includes a physical interface 232, a clock 234, a
timestamp generator 236, and an IEEE 1588 timestamp insert
and packet detection module 238. PHY 210 also includes a
timestamp memory 242. Access to timestamp memory 242
can be controlled by timestamp memory controller 244. In
various aspects, PHY 210 is a chip or a die. In some aspects,
PHY 210 is integrated with the other components of line card
202 (e.g., with at least some MAC layer operations) on a
single die or chip.

Physical interface 232 operates to transmit packet to, and
receive packets from, the network medium 206. In various
aspects, physical interface 232 provides one or more Ethernet
interfaces (e.g., Gigabit Ethernet or other Ethernet variant)
and can include interfaces that use optical and/or electrical
signaling to send and receive data. Physical interface 232 is
typically at the edge of the PHY 210, just before packets exit
PHY 210 on to the network medium. By way of example,
physical interface 232 includes, but is not limited to, a Gigabit
physical layer (GPHY) media dependent interface (MDI)
device, a GPHY physical coding sub-layer (PCS) device,
Gigabit media independent interface (GMII) device, or a
physical layer interface alike.

Clock 234 is a local clock that provides a timing signal for
operations in PHY 210. Clock 234 can be based upon a
physical or logical clock. In some aspects, clock 234 is
derived from a local oscillator in PHY 210 or a network entity
(not shown) that includes PHY 210. In various aspects, clock
234 is based upon a logical clock recovered from a data
stream.

Timestamp generator 236, upon being triggered by
selected events such as, for example, the receipt of a PTP
message or the transmitting of a PTP message, operates to
determine (or generate) a timestamp. Timestamp generator
236 captures the current time from clock 234. Based upon the
type of message for which the timestamp is captured, times-
tamp generator 236 can either store the timestamp in the
timestamp memory 242 for later use or canrecord (e.g., write)
the timestamp in the packet.

15

20

25

30

35

40

45

50

55

60

65

8

IEEE 1588 timestamp insert and packet detection module
238 operates to detect the type of incoming or outgoing mes-
sage and to insert (e.g., record or write) the timestamp in the
incoming or outgoing packet. In various aspects, the IEEE
1588 timestamp insert and packet detection module 238 can
retrieve a timestamp stored in the timestamp memory 242 via
the timestamp memory controller 244 for insertion into a
packet.

Timestamp memory controller 244 operates to control
access to timestamp memory 242. In various aspects, times-
tamp memory controller 244 can access timestamp entries
based upon a combination of fields from the PTP common
header (e.g., domain number and sequence ID). Timestamp
memory 242 can store timestamps captured by timestamp
generator 236 for ingress and egress packets. Other informa-
tion from the packets that can be used to correlate packets of
amessage exchange can also be stored in association with the
timestamps (e.g., a signature associated with the timestamp).
In some implementations, timestamp memory 242 is config-
ured as a first-in-first-out (FIFO) buffer.

Communication between PHY 210 and MAC 216 occurs
over a host interface 240. Data (e.g., packets) as well as
control signals can be communicated over host interface 240.
The host interface 240 can include, but is not limited to, a
peripheral component interface (PCI) device or a GMII
device. Host interface 240 can also be referred to as media
independent interface (MII), PCI and/or management data
input/output (MDIO) interface. In some aspects, PHY 210
communicates with a network entity (not shown) that
includes MAC 216 using the host interface 240. In this regard,
the host interface 240 can communicatively couple PHY 210
to the network entity with the internal switch and bus 204
interconnected between PHY 210 and MAC 216 of the net-
work entity.

FIG. 3 is a block diagram illustrating an example of an
egress data path of a network entity 300 for time synchroni-
zation of network entities, in accordance with various aspects
of'the subject technology. Not all of the depicted components
are required, however, and one or more implementations can
include additional components not shown in the figure. Varia-
tions in the arrangement and type of the components can be
made without departing from the spirit or scope of the claims
as set forth herein. Additional components, different compo-
nents, or fewer components can be provided.

As shown in FIG. 3, the network entity 300 includes a
network physical layer device (PHY) 302, a switch 308 and a
CPU 310. The PHY 302 can be accessed by the CPU 310 via
the switch 308 using a host interface 328. The PHY can be
communicatively coupled to the switch 308 using a serializer/
deserializer (SERDES) interface 316. The PHY includes an
ingress device 304 with an ingress interface that can receive
packets from a network medium (e.g., the network medium
206 of FIG. 2), an egress device 306 with an egress interface
that can transmit packets to the network medium 206, and a
timestamp memory (e.g., the timestamp memory 242). In
various aspects, the PHY 302, switch 308 and CPU 310 are
integrated ona common die or chip. In some aspects, the PHY
302 is a single die or chip, and separate from the switch 308
and CPU 310 in the network entity.

In operation, the egress device 306 canreceive a first egress
packet associated with a synchronization event (e.g., SYNC)
from the CPU 310 via the host interface 328. In some aspects,
the egress packet includes an indication from the CPU 310 to
generate a timestamp of the first egress packet.

The egress device 306 can transmit the first egress packet
using the egress interface as a synchronization message for a
two-step clock scheme of the IEEE 1588 protocol. In this

US 9,306,693 B2

9

regard, the first egress packet can send an estimated clock
value to a slave device in the network medium 206.

Upon transmission of the first egress packet, the egress
device 306 via the timestamp generator 236 (FIG. 2) can
generate an egress timestamp corresponding to a time at
which the first egress packet (e.g., representing all of, or at
least a portion of, the synchronization message) is transmitted
from the egress device 306 to the network medium 206.

In some aspects, the egress device 306 can determine if at
least a portion of the indication matches an egress identifier.
In this regard, the egress device 306 can compare a packet
identifier of the first egress packet included as part of the
indication with an egress identifier maintained by the network
entity (or master). The egress identifier can be set by the CPU
310 to identify a packet that has been modified to support the
timestamp generation independent of a packet format.

The egress device 306 can store the egress timestamp in the
timestamp memory 242 when the packet identifier of the first
egress packet is determined to match the egress identifier
(e.g., process 312). In various aspects, the egress device 306
can generate a notification to indicate that the egress times-
tamp is stored in the timestamp memory 242. In turn, the
egress device 306 can transmit the notification to the CPU 310
using the host interface 328. In response to the notification,
the CPU 310 can perform an MDIO access to retrieve the
egress timestamp stored in the timestamp memory 242.

As part of the two-step clock scheme of the IEEE 1588
protocol, the egress device 306 can be utilized to send out a
follow-up message to the slave device included in, or coupled
to, the network medium 206. In this regard, the egress device
306 can receive a second egress packet associated with the
synchronization event from the CPU 310 via the host inter-
face 328.

The egress device 306 can generate an error-detection code
(or CRC information) based on content contained in the sec-
ond egress packet (e.g., process 314). In turn, the egress
device 306 can replace an error detection tag included in the
second egress packet with the error-detection code. The
egress device 306 can transmit the second egress packet to the
network medium 206 using the egress interface (e.g., the
physical interface 232 of FIG. 2) as a follow-up message to
the original synchronization message. In some aspects, the
second egress packet contains the egress timestamp to pro-
vide the actual clock information to the slave device.

In some aspects, the CPU 310 can disable error detection in
the switch 308 before enabling use of the error detection tag
(or CRC tag) to allow the first and second egress packets to be
forwarded from the CPU 310 to the egress device 306 irre-
spective of an error detection fault (e.g., processes 320 and
322). The CPU 310 can command the switch 308 to be set in
a pass-through mode (e.g., process 324) during a software
register setup using a software instruction that is stored in a
machine-readable storage medium (e.g., the memory 214 of
FIG. 2). The pass-through mode will allow the error detection
portion (e.g., CRC field) of the egress packet to pass through
the switch 308 without incident since the switch 308 would be
expecting to find a standard CRC field rather than the error
detection tag that contains the egress timestamp. The CPU
310 also can command an egress MAC (e.g., MAC 216 of
FIG. 2) to be set in a pass-through mode such that the outgo-
ing egress packet with the error detection tag can be transmit-
ted without causing the egress device 306 and/or the network
entity 300 to function improperly.

The CPU 310 can generate the first and second egress
packets including the insertion of an error detection tag that
provides an indication that timestamp generation irrespective
ofapacket formatis being enabled by the network entity (e.g.,

40

45

10

process 326). In this regard, the egress device 306 would be
able to generate a timestamp for a MAC Sec frame or packet
and/or a packet with any other format, for example.

In some implementations, the first egress packet includes a
request from the CPU 310 for the egress device 306 to gen-
erate the egress timestamp. As part of the request, the CPU
310 can insert a packet identifier that is associated with the
first egress packet into the error detection tag with a value
equal to the egress identifier. The CPU 310 then sends the first
and second egress packets to the egress device 306 via the
switch 308 at respective times (e.g., first time for the synchro-
nization message and second time for the follow-up mes-
sage).

In various aspects, the CPU 310 might need to retrieve
multiple timestamps stored in the timestamp memory 242 due
to the multitask nature of the CPU 310. As such, the CPU 310
can assign a signature to at least the first egress packet, which
is generated to be unique for each egress event packet. In this
regard, the CPU 310 can distinguish between the stored
timestamps. The signature can be composed of a port number
in an upper portion of the signature and a sequence identifier
in a PTP stack for the remaining portion of the signature. The
CPU 310 can use the signature to retrieve the stored egress
timestamp from the timestamp memory 242 in response to the
notification sent from the egress device 306.

When the egress device 306 receives an indication from the
CPU 310 to generate and/or add an egress timestamp to an
egress packet (e.g., the second egress packet as, or part of, the
follow-up message), the egress device 306 can compare the
packet identifier of the first egress packet with the egress
identifier to determine a match. The egress timestamp can be
stored in the timestamp memory 242 when a match is deter-
mined between the packet identifier of the first egress packet
and the egress identifier. In addition, the egress device 306 can
store the signature of the egress timestamp of the first egress
packet in the timestamp memory 242 with the signature and
the egress timestamp being associated with a common loca-
tion in the timestamp memory 242. In this regard, the signa-
ture allows the CPU 310 to differentiate egress timestamps
stored in the timestamp memory 242. In addition, there might
be no need to store source/destination addresses, source/des-
tination IP information, a PTP clock identifier, and/or a
sequence identifier associated with the first egress packet, for
example.

FIG. 4 is a block diagram illustrating an example of an
ingress data path of a network entity for time synchronization
of network entities, in accordance with various aspects of the
subject technology. Because the network entity 400 is sub-
stantially similar to the network entity 300 of FIG. 3, only the
differences will be discussed with respect to FIG. 4.

As shown in FIG. 4, the network entity 400 includes a
network physical layer device (PHY) 302, a switch 308 and a
CPU 310. The PHY includes an ingress device 304 with an
ingress interface that can receive packets from a network
medium (e.g., the network medium 206 of FIG. 2), an egress
device 306 with an egress interface that can transmit packets
to the network medium 206, and the timestamp memory 242.

The ingress device 304 can receive an incoming packet
from the network medium 206 using the ingress interface
(e.g., process 402). In cases where MACSec is enabled, the
incoming packet is encrypted. In this regard, the PTP packet
generation and decoding module 224 (FIG. 2) would not be
able to identify the incoming packet since the incoming
packet would not be in the IEEE 1588 packet format. As such,
the ingress device 304 can generate an ingress timestamp
corresponding to a time at which the incoming packet is
received at the ingress device 304.

US 9,306,693 B2

11

The incoming packet can include an error detection field
(or CRC field) that provides error detection information for
the incoming packet. To facilitate the timestamp generation
irrespective of a packet format, the ingress device 304 can
insert an error detection tag where the error detection field is
located within the incoming packet (e.g., replace the standard
CRC field). In turn, the ingress device 304 can supply the
ingress timestamp within the error detection tag (e.g., process
404). In some aspects, the ingress device 304 can perform an
error detection operation of the incoming packet, and provide
an indication of the error detection result in the error detection
tag. The ingress device 304 can then forward the incoming
packet with the ingress timestamp to the switch 308.

The switch 308 can receive the incoming packet using the
SERDES interface 316 and decode the incoming packet using
the error detection tag to determine whether or not the incom-
ing packet is IEEE 1588 related. If so, the switch 308 can then
forward the incoming packet to the CPU 310 for further IEEE
1588 protocol processing. Otherwise, the switch 308 can
route the incoming packet (e.g., non-1588 related packet)
locally within the network entity. In some aspects, the switch
308 can identify the incoming packet even if the incoming
packet includes a packet format that is not supported by the
PHY 302 (e.g., the incoming packet is a MACSec packet). In
this regard, the switch 308 can determine whether or not to
use, or the CPU 310 can use, the ingress timestamp contained
therein.

In various aspects, the CPU 310 can disable error detection
in the switch 308 during a software register setup using an
executable instruction stored in the memory 214 (e.g., pro-
cesses 406 and 410). In this regard, the CPU can set the switch
308 in a CRC-ignore mode (or an error-ignore mode) to allow
the incoming packet to be forwarded from the ingress device
304 to the CPU 310 irrespective of an error detection fault
(e.g., process 408). By way of example, the switch 308 can
ignore any CRC errors detected by the ingress device 304
using the indication (e.g., a CRC flag) provided within the
error detection tag that is inserted into the incoming packet. In
turn, the CPU 310 can retrieve and/or parse the ingress times-
tamp from the error detection tag to synchronize a local clock
of the network entity (e.g., a slave clock).

FIGS. 5A-5B illustrate examples of packet formats for
time synchronization of network entities, in accordance with
various aspects of the subject technology, with FIG. 5A illus-
trating an ingress packet format 500, and FIG. 5B illustrating
an egress packet format 550. Not all of the depicted compo-
nents are required, however, and one or more implementa-
tions can include additional components not shown in the
figure. Variations in the arrangement and type of the compo-
nents can be made without departing from the spirit or scope
of the claims as set forth herein. Additional components,
different components, or fewer components can be provided.

In various aspects, a packet structure includes, but is not
limited to, a preamble, source/destination address fields, a
data payload and a CRC field. Referring to FIG. 5A, the
ingress packet format 500 can represent the CRC field with
the ingress packet format 500 including a tag field 502 and a
timestamp field 504. The tag field 502 can include a packet
identifier field 506 and a CRC flag 508. In some aspects, the
tag field 502 includes a reserved section. The timestamp field
504 can include a first timestamp format or a second times-
tamp format depending on implementation.

The packet identifier field 506 can identity a corresponding
packet processed by the PHY 302 (FIG. 3). The packet iden-
tifier field 506 can be controlled by a specified software
and/or hardware register included in, or coupled to, the PHY
302. In some aspects, the packet identifier field 506 can be

10

15

20

25

30

40

45

50

55

60

65

12

populated with a value equivalent to the ingress identifier. The
ingress identifier can be maintained and/or generated by the
CPU 310 (FIG. 3) to assist in distinguishing ingress and
egress packets that can traverse through the switch 308 (FIG.
3.

The CRC flag 508 can represent the CRC correctness of the
corresponding packet when the ingress of the IEEE 1588
protocol module 220 (e.g., packet generation and decoding
module 224 of FIG. 2) receives an incoming packet from the
physical interface 232 (e.g., the GPHY MDI). The ingress
device 304 can validate the incoming packet and issue a
validation result as a binary value in the CRC flag 508. By
way of example, if the CRC is incorrect, then the CRC flag
508 is set as a logical one “1”. Otherwise, the CRC flag 508
can be set to a logical zero “0” when the CRC is correct. In
some aspects, the switch 308 and/or the network and higher
layer protocol module 218 (FIG. 2) can decide what to do
when a CRC error is received by the PHY 302 that is capable
of receiving an error detection tag.

The timestamp field 504 can include counter values that
represent respective timestamp formats. The timestamp for-
mat can be controlled by a software and/or hardware register
(e.g., an internal chip register) on a per-chip basis. In this
regard, the register can include an indication (e.g., defined as
a binary value) to provide either a first timestamp format for
higher frequency synchronization or a second timestamp for-
mat for lower frequency synchronization.

Because the egress packet format 550 is substantially simi-
lar to the ingress packet format 500 of FIG. 5A, only the
differences will be discussed with respect to FIG. 5B. Refer-
ring to FIG. 5B, the egress packet format 550 can represent
the CRC field with the ingress packet format 550 including a
tag field 552 and a timestamp field 554. The tag field 552 can
include a packet identifier field 556, a CRC flag 558 and a
timestamp add notice 560. In some aspects, the egress packet
format 550 includes a reserved section located between the
tag field 552 and the timestamp field 554. The timestamp field
504 can include a first timestamp format or a second times-
tamp format depending on implementation.

FIG. 6 illustrates an example of a method 600 of an egress
data path for time synchronization of network entities, in
accordance with various aspects of the subject technology.
PHY 210 of FIG. 2 and/or PHY 302 of FIG. 3, for example,
can be used to implement method 600. However, method 600
can also be implemented by systems having other configura-
tions. Although method 600 is described herein with refer-
ence to the examples of FIGS. 3 and 5A, method 600 is not
limited to these examples. Furthermore, although method 600
is illustrated in the order shown in FIG. 6, it is understood that
method 600 can be implemented in a different order.

Method 600 includes processes 602, 604, 606, 608, 610
and 612. Processes 602 and 610 can be implemented by PTP
packet generation and decoding module 224 and/or IEEE
1588 timestamp insert and packet detection module 238. Pro-
cess 606 can be implemented by timestamp generator 236.
Process 608 can be implemented by timestamp memory con-
troller 244 and timestamp memory 242. Processes 604 and
612 can be implemented by IEEE 1588 timestamp insert and
packet detection module 238 and physical interface 232.
Although the processes implemented by PTP packet genera-
tion and decoding module 224, timestamp generator 236,
IEEE 1588 timestamp insert and packet detection module
238, timestamp memory controller 244 and timestamp
memory 242 are described as being part of method 600, the
processes implemented by PTP packet generation and decod-
ing module 224, timestamp generator 236, IEEE 1588 times-
tamp insert and packet detection module 238, timestamp

US 9,306,693 B2

13

memory controller 244 and timestamp memory 242 can, in
certain aspects, be considered as separate methods.

Method 600 facilitates the generation of timestamps for
egress packets irrespective of a packet format. As such, the
method 600 can facilitate the time synchronization between
network entities that include communication of MACSec
packets or frames, for example.

Process 602 includes receiving, at a first physical interface
(e.g., serializer/deserializer (SERDES) interface), a first
egress packet associated with a synchronization event (e.g.,
an IEEE 1588 synchronization event) from a processor (e.g.,
CPU 310 of FIG. 3). In various aspects, the first egress packet
includes an error detection tag having information to facilitate
egress timestamp generation irrespective of a packet format.
The error detection tag can include a format such as the egress
packet format 550 (FIG. 5B).

Upon receiving the first egress packet, the IEEE 1588
timestamp insert and packet detection module 238 can
inspect the packet to determine if the error detection tag is
included, which is indicative of a modified scheme for times-
tamp generation. In this regard, the modified scheme can
include generating timestamps without the need to parse the
packet using an IEEE 1588 packet format.

In receiving the first egress packet, the method 600 also can
include a process for receiving a command to read an egress
register that includes an egress identifier and an associated
egress command. The egress identifier can identify a corre-
sponding packet that has been, or intends to be, modified to
support the inclusion of the error detection tag. In various
aspects, the error detection tag includes a packet identifier
(e.g., the packet identifier 556 of FIG. 5B) for identifying the
corresponding packet modified to support timestamp genera-
tion independent of a packet format. In some aspects, the
egress register is populated with specified values during an
initialization of the system (e.g., the line card 202 of FIG. 2)
and/or a software register setup process.

In some implementations, the method 600 can include a
process for determining that the packet identifier is to be
compared with the egress identifier based on the associated
egress command. As such, the IEEE 1588 timestamp insert
and packet detection module 238 can compare the packet
identifier of the first egress packet with the egress identifier to
determine a match. In this regard, the egress timestamp can be
stored in the memory (e.g., the timestamp memory 242) when
amatch is determined between the packet identifier of the first
egress packet and the egress identifier.

Process 604 includes transmitting, from a second physical
interface (e.g., GPHY MDI), the first egress packet to a net-
work medium for initiating a timing synchronization in the
network medium. In turn, process 606 includes generating an
egress timestamp corresponding to a time at which the first
egress packet is transmitted from the second physical inter-
face to the network medium with the egress timestamp being
generated irrespective of a packet format of the first egress
packet. The egress register can include an indication of a
format for the egress timestamp with the egress timestamp
being generated in a specified format based on the indication.
By way of example, the egress timestamp can include a first
format for higher frequency systems, or in the alternative, a
second format for lower frequency systems.

Process 608 includes storing the egress timestamp in the
timestamp memory 242 based on the egress identifier. In this
regard, if the packet identifier matches the egress identifier,
then the IEEE 1588 timestamp insert and packet detection
module 238 can instruct the timestamp memory via the times-
tamp memory controller 244 to store the egress timestamp. In
various aspects, the error detection tag of the first egress

5

10

15

20

25

30

35

40

45

55

60

65

14

packet includes an indication from the CPU 310 (FIG. 3) to
store the egress timestamp in the timestamp memory 242. The
indication can be a flag to notify the IEEE 1588 timestamp
insert and packet detection module 238 that an associated
IEEE 1588 event is in progress and the CPU 310 needs access
to the egress timestamp. The method 600 also can include a
process for generating a notification to indicate that the egress
timestamp is stored in the timestamp memory 242. By way of
example, the timestamp generator 236 and/or the IEEE 1588
timestamp insert and packet detection module 238 can create
the notification upon receiving confirmation from the times-
tamp memory controller 244 that the egress timestamp has
been stored in the timestamp memory 242. In addition, the
method 600 can include a process for transmitting the notifi-
cation to the processor (e.g., the CPU 310) using the host
interface (e.g., PCI, GMII) 328.

The method 600 also can include a process for storing a
signature of the egress timestamp of the first egress packet
with the signature and the egress timestamp being associated
with a common location in the timestamp memory 242. In
some aspects, the signature can be utilized to identify the
corresponding egress timestamp for efficient indexing of the
timestamp memory 242. The signature can be generated by
the CPU 310 and sent with the corresponding IEEE 1588
event packet (e.g., the first egress packet). Given the multi-
tasking nature of the CPU 310, the method 600 also can
include a process for storing multiple egress timestamps in
the timestamp memory 242 with each of the egress times-
tamps being associated with a respective signature. In this
regard, each egress timestamp can be distinguishable by vir-
tue of the associated signature.

Process 610 includes receiving, at the first physical inter-
face, a second egress packet associated with the synchroni-
zation event from the CPU 310. In various aspects, the CPU
310 acquires the egress timestamp to provide a follow-up
message as part of the two-step clock scheme of the IEEE
1588 protocol. In this regard, the CPU 310 generates the
second egress packet based on the stored egress timestamp.
The egress timestamp can be provided within (or inserted
into) the second egress packet such that the follow-up mes-
sage provides actual clock information for completing the
timing synchronization in slave devices.

In order for the modified timestamp generation scheme
using the error detection tag to function correctly, the receiv-
ing slave devices, for example, would need to process the
egress packets properly. As such, the method 600 can include
a process for generating an error detection code based on
content included in the second egress packet with the error
detection code being able to provide error detection for the
second egress packet. In turn, the method 600 can include a
process for replacing the error detection tag with the error
detection code with the second egress packet being transmit-
ted to the network medium with the error detection code. In
this regard, the second egress packet would be modified to
appear as a standard egress packet even though the second
egress packet originally contained the error detection tag.

Process 612 includes transmitting, from the second physi-
cal interface, the second egress packet with the stored egress
timestamp being included in the transmitted second egress
packet for completing the timing synchronization in the net-
work medium (e.g., at the slave devices).

FIG. 7 illustrates an example of a method 700 of an ingress
data path for time synchronization of network entities, in
accordance with various aspects of the subject technology.
PHY 210 of FIG. 2 and/or PHY 302 of FIG. 4, for example,
can be used to implement method 700. However, method 700
can also be implemented by systems having other configura-

US 9,306,693 B2

15
tions. Although method 700 is described herein with refer-
ence to the examples of FIGS. 3 and 5A, method 700 is not
limited to these examples. Furthermore, although method 700
is illustrated in the order shown in FIG. 7, it is understood that
method 700 can be implemented in a different order.

Method 700 includes processes 702, 704, 706, 708 and
710. Processes 702 and 706 can be implemented by PTP
packet generation and decoding module 224 and/or IEEE
1588 timestamp insert and packet detection module 238. Pro-
cess 704 can be implemented by timestamp generator 236.
Process 708 can be implemented by IEEE 1588 timestamp
insert and packet detection module 238. Process 710 can be
implemented by PTP packet generation and decoding module
224 and bus 204. Although the processes implemented by bus
204, PTP packet generation and decoding module 224, times-
tamp generator 236, and IEEE 1588 timestamp insert and
packet detection module 238 are described as being part of
method 600, the processes implemented by bus 204, PTP
packet generation and decoding module 224, timestamp gen-
erator 236, and IEEE 1588 timestamp insert and packet detec-
tion module 238 can, in certain aspects, be considered as
separate methods.

Process 702 includes receiving, at a first physical interface
(e.g., the physical interface 232, GPHY MDI), an incoming
packet from a network medium (e.g., the network medium
206 of FIG. 2) with the incoming packet including an error
detection field. The error detection field provides error detec-
tion information for the incoming packet. However, for the
modified timestamp generation scheme to function correctly,
the error detection field will need to be replaced with a modi-
fied structure that includes information for facilitating times-
tamp generation irrespective of a packet format. In this
regard, the PHY 210 would be able to create a timestamp of
the incoming packet even if the incoming packet was in an
IEEE MACSec format, for example.

Process 704 includes generating an ingress timestamp cor-
responding to a time at which the incoming packet is received
at the physical interface 232. In turn, the process 706 includes
replacing the error detection field with an error detection tag.
In this regard, the error detection tag can occupy the same
number of bits previously occupied by the error detection
field. The error detection tag can include a format such as the
ingress packet format 500 (FIG. 5A).

The method 700 also can include a process for performing
an error detection operation on the incoming packet with the
error detection tag including an indication of a result from the
error detection operation. The indication can include a CRC
flag that indicates whether the incoming packet contains any
CRC errors. If the incoming packet does contain a CRC error,
an ingress register and/or the egress register can be set to
denote that a CRC egress packet needs to be generated based
on the corresponding packet (e.g., the incoming packet at the
ingress) containing the CRC error. In some aspects, the
ingress register and the egress register are a common register
implemented in hardware and/or software.

The method 700 also can include a process for reading the
ingress register that contains an ingress identifier. The ingress
identifier is used to identify the corresponding packet having
been modified to support timestamp generating irrespective
to a packet format. The method 700 also can include a process
for inserting a packet identifier based on the ingress identifier
into the error detection tag including an indication that the
incoming packet has been modified with the error detection
tag. The indication can be used by the CPU 310 to denote that
the incoming packet relates to an IEEE 1588 event.

In turn, process 708 includes inserting the ingress times-
tamp into the error detection tag, and process 710 includes

10

15

20

25

30

35

40

45

50

55

60

65

16

sending, from a second physical interface (e.g., SERDES),
the incoming packet with the ingress timestamp to the CPU
310. Upon receipt of the ingress timestamp, the CPU 310 can
utilize the ingress timestamp to synchronize a local clock of
the system.

FIG. 8 conceptually illustrates an electronic system 800
with which one or more implementations of the subject tech-
nology can be implemented. Not all of the depicted compo-
nents are required, however, and one or more implementa-
tions can include additional components not shown in the
figure. Variations in the arrangement and type of the compo-
nents can be made without departing from the spirit or scope
of the claims as set forth herein. Additional components,
different components, or fewer components can be provided.

The electronic system 800, for example, can be a desktop
computer, a laptop computer, a tablet computer, a server, a
switch, a router, a base station, a receiver, a phone, a personal
digital assistant (PDA), or generally any electronic device
that transmits signals over a network. The electronic system
800 can be, and/or can be a part of master 102, slave 104,
and/or intermediate node 106 (FIG. 1). Such an electronic
system 800 includes various types of computer readable
media and interfaces for various other types of computer
readable media. The electronic system 800 includes a bus
808, one or more processing unit(s) 812, a system memory
804, a read-only memory (ROM) 810, a permanent storage
device 802, an input device interface 814, an output device
interface 806, and one or more network interfaces 816, or
subsets and variations thereof. The network interfaces 816
can include a local area network (LAN) interface and a wide
area network (WAN) interface.

The bus 808 collectively represents all system, peripheral,
and chipset buses that communicatively connect the numer-
ous internal devices of the electronic system 800. In one or
more implementations, the bus 808 communicatively con-
nects the one or more processing unit(s) 812 with the ROM
810, the system memory 804, and the permanent storage
device 802. From these various memory units, the one or
more processing unit(s) 812 retrieves instructions to execute
and data to process in order to execute the processes of the
subject disclosure. The one or more processing unit(s) 812
can be a single processor or a multi-core processor in different
implementations.

The ROM 810 stores static data and instructions that are
needed by the one or more processing unit(s) 812 and other
modules of the electronic system 800. The permanent storage
device 802, on the other hand, can be a read-and-write
memory device. The permanent storage device 802 can be a
non-volatile memory unit that stores instructions and data
even when the electronic system 800 is off. In one or more
implementations, a mass-storage device (such as a magnetic
or optical disk and its corresponding disk drive) can be used
as the permanent storage device 802.

In one or more implementations, a removable storage
device (such as a flash drive or a universal serial bus (USB)
drive) can be used as the permanent storage device 802. Like
the permanent storage device 802, the system memory 804
can be a read-and-write memory device. However, unlike the
permanent storage device 802, the system memory 804 can be
a volatile read-and-write memory, such as random access
memory. The system memory 804 can store any of the
instructions and data that one or more processing unit(s) 812
might need at runtime. In one or more implementations, the
processes of the subject disclosure are stored in the system
memory 804, the permanent storage device 802, and/or the
ROM 810. From these various memory units, the one or more

US 9,306,693 B2

17

processing unit(s) 812 retrieves instructions to execute and
data to process in order to execute the processes of one or
more implementations.

In some aspects, the electronic system 800 includes a com-
puter program product with instructions stored in a tangible
computer-readable storage medium such as permanent stor-
age device 802. The instructions can include instructions for
receiving, at a first physical interface, a first egress packet
associated with a synchronization event from a processor,
instructions for transmitting, from a second physical inter-
face, the first egress packet to a network medium for initiating
atiming synchronization in the network medium, instructions
for generating an egress timestamp corresponding to a time at
which the first egress packet is transmitted from the second
physical interface to the network medium with the egress
timestamp being generated irrespective of a packet format of
the first egress packet, instructions for storing the egress
timestamp in a memory based on an egress identifier, instruc-
tions for receiving, at the first physical interface, a second
egress packet associated with the synchronization event from
the processor, in which the processor generates the second
egress packet based on the stored egress timestamp, and
instructions for transmitting, from the second physical inter-
face, the second egress packet with the stored egress times-
tamp being included in the transmitted second egress packet
for completing the timing synchronization in the network
medium.

In various aspects, the computer program product of the
electronic system 800 includes instructions for receiving, at a
first physical interface, an incoming packet from a network
medium with the incoming packet including an error detec-
tion field, instructions for generating an ingress timestamp
corresponding to a time at which the incoming packet is
received at the first physical interface, instructions for replac-
ing the error detection field with an error detection tag,
instructions for inserting the ingress timestamp into the error
detection tag, and instructions for providing the incoming
packet with the ingress timestamp to a processor.

The bus 808 also connects to the input and output device
interfaces 814 and 806. The input device interface 814
enables a user to communicate information and select com-
mands to the electronic system 800. Input devices that can be
used with the input device interface 814 can include, for
example, alphanumeric keyboards and pointing devices (also
called “cursor control devices™). The output device interface
806 can enable, for example, the display of images generated
by electronic system 800. Output devices that can be used
with the output device interface 806 can include, for example,
printers and display devices, such as a liquid crystal display
(LCD), a light emitting diode (LED) display, an organic light
emitting diode (OLED) display, a flexible display, a flat panel
display, a solid state display, a projector, or any other device
for outputting information. One or more implementations can
include devices that function as both input and output devices,
such as a touchscreen. In these implementations, feedback
provided to the user can be any form of sensory feedback,
such as visual feedback, auditory feedback, or tactile feed-
back; and input from the user can be received in any form,
including acoustic, speech, or tactile input.

Finally, as shown in FIG. 8, the bus 808 also couples the
electronic system 800 to a network (not shown) through one
or more of the network interfaces 816. For example, the bus
808 can couple the electronic system 800 to a network
through a LAN interface and separately, or jointly, through a
WAN interface. In this manner, the electronic system 800 can
be a part of a network of computers, such as a LAN through
the LAN interface, a WAN through the WAN interface, an

10

15

20

25

30

35

40

45

50

55

60

65

18
Intranet through either of the LAN or WAN interfaces, or a
network of networks through either of the LAN or WAN
interfaces, such as the Internet. Any or all components of the
electronic system 800 can be used in conjunction with the
subject disclosure.

Implementations within the scope of the present disclosure
can be partially or entirely realized using a tangible computer-
readable storage medium (or multiple tangible computer-
readable storage media of one or more types) encoding one or
more instructions. The tangible computer-readable storage
medium also can be non-transitory in nature.

The computer-readable storage medium can be any storage
medium that can be read, written, or otherwise accessed by a
general purpose or special purpose computing device, includ-
ing any processing electronics and/or processing circuitry
capable of executing instructions. For example, without limi-
tation, the computer-readable medium can include any vola-
tile semiconductor memory, such as RAM, DRAM, SRAM,
T-RAM, Z-RAM, and TTRAM. The computer-readable
medium also can include any non-volatile semiconductor
memory, such as ROM, PROM, EPROM, EEPROM,
NVRAM, flash, nvSRAM, FeRAM, FeTRAM, MRAM,
PRAM, CBRAM, SONOS, RRAM, NRAM, racetrack
memory, FIG, and Millipede memory.

Further, the computer-readable storage medium can
include any non-semiconductor memory, such as optical disk
storage, magnetic disk storage, magnetic tape, other magnetic
storage devices, or any other medium capable of storing one
or more instructions. In some implementations, the tangible
computer-readable storage medium can be directly coupled
to a computing device, while in other implementations, the
tangible computer-readable storage medium can be indirectly
coupled to a computing device, e.g., via one or more wired
connections, one or more wireless connections, or any com-
bination thereof.

Instructions can be directly executable or can be used to
develop executable instructions. For example, instructions
can be realized as executable or non-executable machine code
or as instructions in a high-level language that can be com-
piled to produce executable or non-executable machine code.
Further, instructions also can be realized as or can include
data. Computer-executable instructions also can be organized
in any format, including routines, subroutines, programs, data
structures, objects, modules, applications, applets, functions,
etc. As recognized by those of skill in the art, details includ-
ing, but not limited to, the number, structure, sequence, and
organization of instructions can vary significantly without
varying the underlying logic, function, processing, and out-
put.

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute software, one or
more implementations are performed by one or more inte-
grated circuits, such as application specific integrated circuits
(ASICs) or field programmable gate arrays (FPGAs). In one
or more implementations, such integrated circuits execute
instructions that are stored on the circuit itself.

Those of skill in the art would appreciate that the various
illustrative blocks, modules, elements, components, meth-
ods, and algorithms described herein can be implemented as
electronic hardware, computer software, or combinations of
both. To illustrate this interchangeability of hardware and
software, various illustrative blocks, modules, elements,
components, methods, and algorithms have been described
above generally in terms of their functionality. Whether such
functionality is implemented as hardware or software
depends upon the particular application and design con-
straints imposed on the overall system. Skilled artisans can

US 9,306,693 B2

19

implement the described functionality in varying ways for
each particular application. Various components and blocks
can be arranged differently (e.g., arranged in a different order,
or partitioned in a different way) all without departing from
the scope of the subject technology.

It is understood that any specific order or hierarchy of
blocks in the processes disclosed is an illustration of example
approaches. Based upon design preferences, it is understood
that the specific order or hierarchy of blocks in the processes
can be rearranged, or that all illustrated blocks be performed.
Any of the blocks can be performed simultaneously. In one or
more implementations, multitasking and parallel processing
can be advantageous. Moreover, the separation of various
system components in the embodiments described above
should not be understood as requiring such separation in all
embodiments, and it should be understood that the described
program components and systems can generally be integrated
together in a single software product or packaged into mul-
tiple software products.

As used herein, the phrase “at least one of” preceding a
series of items, with the term “and” or “or” to separate any of
the items, modifies the list as a whole, rather than each mem-
ber of the list (i.e., each item). The phrase “at least one of”
does not require selection of at least one of each item listed;
rather, the phrase allows a meaning that includes at least one
of any one of the items, and/or at least one of any combination
of'the items, and/or at least one of each of the items. By way
of example, the phrases “at least one of A, B, and C” or “at
least one of A, B, or C” each refer to only A, only B, or only
C; any combination of A, B, and C; and/or at least one of each
of A, B, and C.

The predicate words “configured to”, “operable t0”, and
“programmed to” do not imply any particular tangible or
intangible modification of a subject, but, rather, are intended
to be used interchangeably. In one or more implementations,
aprocessor configured to monitor and control an operation or
a component can also mean the processor being programmed
to monitor and control the operation or the processor being
operable to monitor and control the operation. Likewise, a
processor configured to execute code can be construed as a
processor programmed to execute code or operable to execute
code.

Phrases such as an aspect, the aspect, another aspect, some
aspects, one or more aspects, an implementation, the imple-
mentation, another implementation, some implementations,
one or more implementations, an embodiment, the embodi-
ment, another embodiment, some embodiments, one or more
embodiments, a configuration, the configuration, another
configuration, some configurations, one or more configura-
tions, the subject technology, the disclosure, the present dis-
closure, other variations thereof and alike are for convenience
and do not imply that a disclosure relating to such phrase(s) is
essential to the subject technology or that such disclosure
applies to all configurations of the subject technology. A
disclosure relating to such phrase(s) can apply to all configu-
rations, or one or more configurations. A disclosure relating
to such phrase(s) can provide one or more examples. A phrase
such as an aspect or some aspects can refer to one or more
aspects and vice versa, and this applies similarly to other
foregoing phrases.

Any embodiment described herein as “exemplary” or as an
“example” is not necessarily to be construed as preferred or
advantageous over other embodiments. Furthermore, to the
extent that the term “include”, “have”, or the like is used in the
description or the claims, such term is intended to be inclusive
in a manner similar to the term “comprise” as “comprise” is
interpreted when employed as a transitional word in a claim.

10

15

20

25

30

35

40

45

50

55

60

20

All structural and functional equivalents to the elements of
the various aspects described throughout this disclosure that
are known or later come to be known to those of ordinary skill
in the art are expressly incorporated herein by reference and
are intended to be encompassed by the claims. Moreover,
nothing disclosed herein is intended to be dedicated to the
public regardless of whether such disclosure is explicitly
recited in the claims. No claim element is to be construed
under the provisions of 35 U.S.C. §112, sixth paragraph,
unless the element is expressly recited using the phrase
“means for” or, in the case of a method claim, the element is
recited using the phrase “step for”.

The previous description is provided to enable any person
skilled in the art to practice the various aspects described
herein. Various modifications to these aspects will be readily
apparent to those skilled in the art, and the generic principles
defined herein can be applied to other aspects. Thus, the
claims are not intended to be limited to the aspects shown
herein, but are to be accorded the full scope consistent with
the language claims, where reference to an element in the
singular is not intended to mean “one and only one” unless
specifically so stated, but rather “one or more”. Unless spe-
cifically stated otherwise, the term “some” refers to one or
more. Headings and subheadings, if any, are used for conve-
nience only and do not limit the subject disclosure.

What is claimed is:

1. A method comprising:

receiving, at a first physical interface, a first egress packet

associated with a synchronization event from a proces-
sor;
transmitting, from a second physical interface, the first
egress packet to a network medium for initiating a tim-
ing synchronization in the network medium;

generating an egress timestamp corresponding to a time at
which the first egress packet is transmitted from the
second physical interface to the network medium, the
egress timestamp being generated irrespective of a
packet format of the first egress packet;

storing the egress timestamp in a memory;

receiving, at the first physical interface, a second egress

packet associated with the synchronization event from
the processor, wherein the second egress packet is gen-
erated by the processor based on the stored egress times-
tamp; and

transmitting, from the second physical interface, the sec-

ond egress packet, the stored egress timestamp being
included in the transmitted second egress packet for
completing the timing synchronization in the network
medium.

2. The method of claim 1, wherein the first and second
egress packets comprise an error detection tag having infor-
mation to facilitate the generation of the egress timestamp.

3. The method of claim 2, wherein the error detection tag of
the first egress packet comprises an indication to store the
egress timestamp in the memory.

4. The method of claim 2, further comprising:

generating an error detection code based on content

included in the second egress packet, wherein the error
detection code provides error detection for the second
egress packet; and

replacing the error detection tag with the error detection

code, wherein the second egress packet is transmitted to
the network medium with the error detection code.

US 9,306,693 B2

21

5. The method of claim 2, wherein the error detection tag of
the first egress packet comprises a packet identifier, the
method further comprising:

receiving a command to read an egress register that com-

prises an egress identifier and an associated egress com-
mand; and

determining that the packet identifier is to be compared

with the egress identifier based on the associated egress
command.

6. The method of claim 5, further comprising:

comparing the packet identifier of the first egress packet

with the egress identifier to determine a match, wherein
the egress timestamp is stored in the memory when a
match is determined between the packet identifier of the
first egress packet and the egress identifier.

7. The method of claim 5, wherein the egress register
comprises an indication of a format for the egress timestamp,
wherein the egress timestamp is generated with a specified
format based on the indication.

8. The method of claim 1, further comprising:

storing a signature of the egress timestamp of the first

egress packet, wherein the signature and the egress
timestamp are associated with a common location in the
memory.

9. The method of claim 8, further comprising:

storing a plurality of egress timestamps in the memory,

wherein each of the plurality of egress timestamps is
associated with a respective signature.

10. The method of claim 1, further comprising:

generating a notification to indicate that the egress times-

tamp is stored in the memory; and

transmitting, from a host interface, the notification to the

processor.

11. A method comprising:

receiving, at a first physical interface, an incoming packet

from a network medium, the incoming packet compris-
ing an error detection field;

generating an ingress timestamp corresponding to a time at

which the incoming packet is received at the first physi-
cal interface;

replacing the error detection field with an error detection

tag;

inserting the ingress timestamp into the error detection tag;

inserting a packet identifier into the error detection tag, the

packet identifier including an indication that the error
detection field of the incoming packet has been replaced
with the error detection tag; and

providing the incoming packet with the ingress timestamp

to a processor.

12. The method of claim 11, further comprising:

reading an ingress register that comprises an ingress iden-

tifier and an associated ingress command, wherein the
packet identifier is based on the ingress identifier.

13. The method of claim 11, further comprising perform-
ing an error detection operation on the incoming packet,
wherein the error detection tag includes a result of the error
detection operation.

14. A system comprising:

a central processing unit (CPU);

a switch configured to be accessed by the CPU using a host

interface; and

a network physical layer (PHY) configured to be accessed

by the CPU using the host interface, the PHY compris-

ing:

an ingress device configured to receive packets from a
network medium;

10

15

20

25

35

40

45

50

55

60

65

22

an egress device configured to transmit packets to the
network medium; and
a timestamp memory,
wherein the egress device is configured to:
receive, at a first physical interface, a first egress
packet associated with a synchronization event
from the CPU;,
transmit, from a second physical interface, the first
egress packet to the network medium for initiating
a timing synchronization in the network medium;
generate an egress timestamp corresponding to a time
at which the first egress packet is transmitted from
the second physical interface to the network
medium;
store the egress timestamp in a memory;
receive, at the first physical interface, a second egress
packet associated with the synchronization event
from the CPU, wherein the CPU is configured to
generate the second egress packet based on the
stored egress timestamp; and
transmit, from the second physical interface, the sec-
ond egress packet, the stored egress timestamp
being included in the transmitted second egress
packet for completing the timing synchronization
in the network medium.

15. The system of claim 14, wherein the CPU is configured
to:

disable error detection in the switch;

generate the first egress packet comprising an error detec-

tion tag, wherein the error detection tag includes a
request for the egress device to generate the egress
timestamp;

insert a packet identifier into the error detection tag with a

value equal to an egress identifier;
assign a signature to at least the first egress packet;
retrieve the stored egress timestamp from the timestamp
memory based on the signature of the first egress packet
in response to a notification from the egress device; and

send the first and second egress packets to the egress device
via the switch at respective times.
16. The system of claim 15, wherein the egress device is
configured to:
compare the packet identifier of the first egress packet with
the egress identifier to determine a match, wherein the
egress timestamp is stored in the timestamp memory
when a match is determined between the packet identi-
fier of the first egress packet and the egress identifier;

store the signature of the egress timestamp of the first
egress packet in the timestamp memory, wherein the
signature and the egress timestamp are associated with a
common location in the timestamp memory;

generate the notification to indicate that the egress times-

tamp is stored in the timestamp memory;

send, from the host interface, the notification to the CPU;

generate an error detection code based on content included

in the second egress packet, wherein the error detection
code provides error detection for the second egress
packet; and

replace the error detection tag with the error detection

code, wherein the second egress packet is transmitted to
the network medium with the error detection code.

17. The system of claim 14, wherein the CPU is configured
to set the switch in a pass-through mode to allow the first and
second egress packets to be forwarded from the CPU to the
egress device irrespective of an error detection fault.

US 9,306,693 B2

23

18. The system of claim 14, wherein the ingress device is
configured to:
receive an incoming packet from the network medium, the
incoming packet comprising an error detection field;
generate an ingress timestamp corresponding to a time at
which the incoming packet is received by the ingress
device;

replace the error detection field with an error detection tag;

insert the ingress timestamp into the error detection tag;
and

provide the incoming packet with the ingress timestamp to
the CPU.

19. The system of claim 18, wherein the CPU is configured

to:
disable error detection in the switch; and

parse the ingress timestamp from the error detection tag to

synchronize a local clock of the system.

20. The system of claim 19, wherein the CPU is configured
to set the switch in an error-ignore mode to allow the incom-
ing packet to be forwarded from the ingress device to the CPU
irrespective of an error detection fault.

#* #* #* #* #*

10

15

20

24

